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ABSTRACT

The problem of potential flow around two-dimensional
airfoils is solved by using a new singular integral method. The
potential flow equations for incompressible potential flow are
written in a singular integral equation. This equation is solved at
N collocation points on the airfoil surface. A unique feature of
this method is that the airfoil geometry is specified as an
independant variable in the exact integral equation.

Compared to other numerical methods, the present
calculation procedure is much simpler and gives remarkable
accuracy for many body shapés. An advantage of the present
method is that it allows the inverse design calculation and the
results are extremely accurate. Compared to other previous
calculations, thé present design solution is simpler, more accurate

and does not use an iteration procedure.
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CHAPTER 1
REVIEW OF EXISTING METHODS

1.1 Introduction
A potential flow is one which is inviscid and
irrotational. The irrotational condition implies that the
velocity can be defined in terms of a potential function by:
V=Vo
When the problem involves a prescribed free stream flow over
an arbitrary body, the velocity is commonly expressed as:

- -

U=U_+q,
where U, is the onset flow present when the body is not

present and q is the disturbance velocity. In most cases U, is

a uniform flow defined as parallel to the x-axis. When the flow
is potential and incompressible, the Navier-Stokes equations
reduce to the following equation:
V=0

The flow field is completely determined by kinematics,
when the appropriate boundary conditions are specified. On the
surface of the airfoil, the vector velocity is tangent to the
surface and the disturbance velocity vanishes as the distance
from the airfoil increases to infinity.

When the flow is not symmetrical, we need an additional

1
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(1.2)



condition which is given by the Kutta requirement. The Kutta
condition states that the flow cannot go around the sharp
trailing edge, but must leave the airfoil so that the upper and
lower streams join smoothly at the trailing edge. This
condition determines a unique value of the circulation.

There are many techniques for calculating the
incompressible potential flow around two-dimensional bodies;
this chapter reviews several methods which have some

similarity to the current singular integral method.

1.2  Thin-Airfoil Theory

The thin-airfoil theory u.ses several approximations in
order to calculate the surface pressure distribution. The
method of calculation is convenient for a rapid estimation of
the velocity or pressure distributioh over the airfoil. This
theory had its beginnings in the early days of Thermodynamics
with Munk [1], Birnbaum [2] and Glauert [3].

We assume that the airfoil is thin and that the camber
and angle of attack are small. This suggests that the

disturbance velocity is small compared to the free steam
velocity U_, . Since at the stagnation point this statement is
evidently not true, the calculation is useful in regions which

exclude this point.

The differential equation governing the flow field is:



v%=0 _ (1.4)
The boundary condition along the mean camber line given by,

-y M.y ¢ (1.5)
oy *am

where 1 is the equation of the camber line, U, is the free

stream velocity and a is the angle-of-attack. The far stream
condition can be stated as:

20 20 g at infinity. (1.6)
a1 2y

The solution for the flow field is obtained by superposing
three problems:
Problem 1 represents a thin symmetrical airfoil at zero angle
of attack.
Problem 2 represents the steady flow past a cambered airfoil
of zero thickness at zero angle of attack
Problem 3 represents a flat plate airfoil at an angle of attack.
We first consider the problem of a thin symmetrical
airfoil at zero angle of attack. The effect of thickness can be
represented by a continuous distribution of sources along the
x-axis. The disturbance potential can then be expressed by the

following integral equation:
1

! 2
=1 2
¢(u,y)—5-ﬁ-ojq(§) log[(H_g) +92] dz (1.7)



The proper source distribution denoted by q( & ) is determined

by the surface boundary condition which gives:
q{n)=2v 20 (1.8)
> dH

For the problem of the cambered airfoil of zero thickness

‘we use a suitable distribution of vortices along the X-axis of

the airfoil. The disturbance potential is given at the field point

(x , y) by the integral relation:
|
1 -4
ol,y) 5 Jy(g) tan [ (a-g)] de (1.9)

Again the boundary conditions allow us to evaluate the axial
distribution of vorticity. .

The flow field over a flat plate airfoil is solved by using
a vortex distribution. The suitable distribution of vorticity is

given as a solution of the following integral equation:

!

%Jy(g);{% =_ (1.10)
After some mathematical manipulation, we obtain the vortex
distribution:

y(e)=2p_ o 1otost (1.11)

sin 0
The relationship between ® and @ is given by:

=%(l+cose) (1.12)



The general solution for the flow over a thin airfoil is finally
obtain by superposing the three previous calculations. This

developments come from reference [4]

1.3 Surface Distributions for Potential Flow

The principle of this method is to sum sources, sinks,
vortices or dipoles on the surface of the airfoil to form a flow
field that satisfies the boundary conditions. The surface of the
airfoil is approximated by N elements or panels with N points
at which the singularity is to be evaluated. Each singularity is
superposed with the uniform free stream and the resulting flow
velocity must be tangent to each N elements of the airfoil at

the points where the singularity is to be evaluated. All surface

singularity methods, sometimes called panel methods, use the

zero normal velocity on the surface to derive an integral
equation for the singularity distribution. The evaluation of the
proper distribution basically solves the problem and allows the
computation of the pressure distribution. The most
straightforward form to formulate this method is to use
Green's theorem. The potential at any point P exterior to the

airfoil can be expressed as:



ds

°¢‘q)ds+—“¢q

¢(P)--'H

r(p.q) 20 r(P,q)

(1.13)

n denotes the normal to the surface at point q. The potential

at a point p on the surface is given by:

o(p)=-- ” °¢‘q)ds+—”¢q

ds

r(p q) r(p q)

(1.14)

Since d¢/dng is prescribed, this is an integral for o(r). This

equation represents a Fredholm integral equation, whose Kernel
is given by:
(1.15)

K(pq)—__ r(pq)

However, the formulation that is more convenient is given by a

surface distribution of unknown source strength
o (P) = “

This type of distribution gives a unique solution for the

o(q) ds (1.16)
r Pq

potential flow. Applying the boundary condition, we obtain the

following integral equation:

Zﬂo(p)-J!%%[m]o(p) ds=-n .U_ (1.17)



This is a Fredholm integral equation of the second kind whose

kernel is:

i
Klp,a) - - 7?1: r (p,q)]

These equaﬁons are the basic formulation of the surface source
density method to solve the problem of potential flow. The
accuracy of this method is determined by the number of the
elements used to approximate the body surface. For usual
shapes, such as a two dimensional airfoil, 30 to 60 elements is
sufficient. Usually the only interest is in the calculation of the
surface velocity. The potential off the airfoil needs not to be
calculated. .

Lift is deduced by means of a vorticity distribution on
the surface. A conventional airfoil has a sharp trailing edge
therefore for each angle of attack, there is a unique circulation
that makes the potential flow velocity finite at the trailing
edge. This condition is known as the Kutta condition. One
technique is to put a vortex surface distribution on the surface
of the airfoil. This method was proven to give the most
accurate solution. The votex distribution would take the same
N elements used for the source distribution and all the
components will be summed up over the elements. The
variation of the strength of the vortices is arbitrary, however a

constant strength gives the most accurate solution. Another

(1.18)



technique is to place the vorticity distribution on the airfoil

mean line. In this case only one vortex singularity needs to be

placed on the mean line. This formulation has been reviewed by

Maskew and Woodward [5]

This method of solving the potential flow using a
surface distribution is general and can be applied to any kind of
bodies (two- dimensional, axisymmetric and even three
dimensional shapes). Because of its versatility and accuracy, it
has become the most popular technique for computing potential

flows. This developments come from references [6] and [7].

14 Conformal Trangfgrmat.igng

Conformal transformations solve the potential flow field
by using a complex transformed plane. The method simplifies
the calculation of the flow field by solving for the flow field
over a circle in the transformed plane which corresponds to the
flow over a complicated airfoil shape in the real plane.
Laplace's equation in the real plane transforms into Laplace's
equation in the virtual plane and also the boundary conditions
remain the same in both planes. The transformation maps
points from the real plane using complex variables:

2=H+i¥y

into points on a transformed plane:

C=&+in

(1.19)

(1.20)



The mapping is given by a function of the type:
S Z=grrg/Gary/t2 e g/t v L (1.21)
where r; are real constants. The problem in the transformed

plane reduces to the flow field over a cylinder. The exact
solution is found by using a doublet, a uniform free stream and
a value for the circulation which ensures the uniqueness of the
solution. The solution is then transformed back into the real
plane to give the pressure distribution on the airfoil. This
method is limited to spécial airfoil profiles for which a
conformal transformation exists.

The most important conformal transformation is the
Joukowsky transformation which leads to a family of airfoils
known as Joukowsky airfoils. The Joukowsky transformation
has the form:

2=0+r/¢ (1.22)
and the inverse transformation used to transform back the

solution into the real plane is given by:
1

ry
2
=2 z _ .2 1.23
Czi[4r] ( )

In the transformed plane the center of the circle is displaced
from the origin and the X-axis displacement is proportional to

the thickness of the Joukowsky airfoil while the Y-axis
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displacement is determined by the camber. There are an
infinite number of flows over a circle and the unique solution

is found by invoking the Kutta condition which determined the
position of the rear stagnation point on the circle. Another
important aspect of the transformation is that at infinity the

flows have exactly the same form and the angle of attack is

also the same in either plane. More details about the Joukowsky
transformation can be found in the reference [8]. Real airfoils
are not Joukowsky airfoils, however the study of Joukowsky
airfoil shapes give general trends for ideal flow over real

airfoil shapes of similar thickness and camber.



CHAPTER 2
MATHEMATICAL FORMULATION
AND NUMERICAL ALGORITHM

2.1 Intr ion

The problem of predicting the pressure distribution about
a two-dimensional airfoil has received considerable attention
from various investigators. This study uses a recently
developed [9] singular integral technique to solve the potential
flow field over a two-dimensional airfoil. The calculation
technique bears some resemblance to conventional singular
integral methods as it reduces the formulation of the
two-dimensional flow problem to the solution of an integral
equation. However, this method has significant differences
from other methods. It derives the integral equation by using a
Fourier transform. Then, introducing a Taylor series expansion,
the inverse transform is evaluated analytically. An important
aspect is that the surface geometry of the airfoil appears
explicitly in the integral equation. The advantage of this
technique is that the formulation allows the inverse
calculation to be easily performed, i.e. given a desired
pressure distribution, the airfoil geometry can be found
without iteration.

Two main computer programs have been developed for

11



two-dimensional airfoils. The first program will compute a
pressure distribution for arbitrary combinations of airfoil
geometry and angle of attack while the second program will
calculate an airfoil profile for a given pressure distribution.

The programs were shown to be in good agreement with known
results. The numerical results will be presented in a
subsequent chapte}. This chapter descibes the mathematical
development and numerical solution associated with this new

formulation of the potential flow problem.

2.2 Formulation of th ion

| Consider a symmetrical airfoil of moderate thickness at
some angle of attack to a free stream. The outer flow is
two-dimensional, inviscid and irrotational. As shown in Figure
2.1, the cartesian coordinate system is taken with the origin at

the center point of the airfoil chord. The length of the airfoil

chord is taken using non-dimensional variables to be equal to 2.

The outer free stream at infinity U, is inclined at an angle of

incidence a relative to the x-axis. The equation of the airfoil
relative to the axis system is denoted by:

y=n (x) (2.1)
We introduce a disturbance velocity vector q (#,4) due to the

presence of the airfoil and we write:

12



Uv=v_ +qy | (2.2)

In the following analysis, U, represents a constant vector. In

non-dimensional form, the magnitude of U, isequalto 1. Ina

similar way, we introduce a disturbance potential for the

disturbance velocity and we have:
6=0__+ 9 (2.3)

It should be noted that the disturbance potential does not need
to be small in the following formulation.

The first step in the formulation is to divide the
problem into an upper and lower plane as shown in Figure 2.2.
The mathematical problem will then be solved independently
for the lower and upper plane. In terms of the potential the
flow field is described by the following mathematical
formulation for the upper plane:

Differential equation

2 u 2 u
26 - + 20 —=0 (2.4)
oH 2y

13
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Figure 2.1
Figure 2.2
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Surface boundary condition

() -ococ<n<-1
u
[AqL = 20Ty
y OR X
y=nlx)
_I.U(H) 1<H< o0

Far stream condition
oY (x,y) equal ¢, as the distance from the

airfoil increases to infinity

For the lower plane a similar set of equations applies and the
potential function will be denoted by ¢'(H,g) . For symmetrical
flows with a symmetrical airfoit only the upper half needs to
be computed. However, in the general case, both the upper and
lower plane are independently calculated. The parameters,
BY(x) and WY(x) are the y-components of the velocities along
the centerline upstream and downstream of the airfoil
respectively. For a symmetrical flow BUY(x) and wY(n) are
zero. For nonsymmetrical flows, we require that ( DY(x),
WwYx) ) and (B'Ge) , W) ) match along the centerline, this
ensures a unique solution and in effect replaces the usual Kutta
condition.

Finally we rewrite the mathematical formulation in
term)s of the disturbance potential and the disturbance upwash

and downwash velocities defined by:

15
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U(x) = sina + v (R)
(2.6)
W(x) = sin o + w ()
The mathematical statement of the disturbance potential is
given below for the upper plane:
2~y 27~y |
2.6 .20 =g (2.7)
2 2
oH oy
gl u
20 =f (&) (2.8)
%y
y=n(x)
where,
U(r) -oo<H<-1
u ~u u
()= (cosa+22—)20__ging -1<us<t
oH oR
| W(®) 1<H<Coo
~u LU
20 and 20 0 as Hz+gz—+°° (2.9)
oK 2y

A similar set of equations exists for the lower plane.

2.3 lution Fourier Transform
In order to find a solution for the above mathematical

equations we use the Fourier Transform in the x-direction

assuming that the function ¢ satisfies the Dirichlet conditions



in every finite interval. The Fourier transform pair is given by:

o0

O (s,y) = L j $(H,g) e % gy

Jom

The function @(s,Y) is the Fourier transform of ¢(x,4y) . The

differential equation for @(s,y) is given by,

2
— -s 0 =10
2y
with the boundary conditions: .

22

2y = F(s)

y=n(s)

d 22

dan -0 as y o oo

o0

F) = —L= [ 160 7 g

Jaw _,

r~
U(B) -o0<H<-1

F ) =] (cosq+2—)2 _ino —-1<u<l
o ox

| W(R) 1<x< oo

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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The solution is easily found to be:
o(s,y) = _ME-ISI(g-n(s)) (2.16)
sl
Applying the inversion formula , the potential function is
formally given by:
. < P -Isl(y-n(s)) _is(r-E)
¢=___1_Jf(§) Je e ds |de  (2.17)
21 |s]
-o0 - 00
Although the solution is exact, the above equation is not
useful from a computational perspective. However a simplified
expression is found by expanding the exponential in a Taylor
series over the transform variable s. A term by term
integration then yields the following approximate expressions:
-~ o0
% . L[ fe)K (ny;8) o
o 7 H
-0 (2.18)
- o0
2 . L (1)K (ny;0)
oy m y
-00
The Kernel functions of the above integral equations, accurate
to 0(¢2) where e=t/c, are given by:
K (u,y; &) = BG
H (H-§)2+(g-n )2
(2.19)

K (#,4; &) = 4
Y (1-8)°+(yn)”
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Although, (2.18) and (2.19) represent approximate solutions in
general, it can be shown that they are exact on the surface.
Also, it should be noted that if n=0, and if the disturbance
potential is set to zero in equation (2.15), we recover the usual
thin airfoil equations.

. It may be observed that the equations (2.18) are singular
Fredholm integral equations of the second kind and their

Kernels are of difference type with a Cauchy singularity. For

example, the behavior of K, is: Ky (#,4;8) >+ 00, as - H,,.

The variation of f(E) in the Kernel function is continuous
across the interval [-1,1 ] exept at the leading edge. The
treatement of the singularity condition at £=# requires the

use of the Cauchy principal values. Another important aspect is
that the Fredholm integral equation must be solved in an
iterative manner since f(§) contains aterm 3¢/d% which is
unknown. The solution of the equations (2.18) by means of
various optimized quadrature techniques is discussed in the

following section.

2.4 line of the Sinqgular Inteqgral E ion Solution
Pr r

We wish to solve the integral equation (2.18) on the

surface of the airfoil with y = n(#t). First we replace the
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function f(x) by its respective values along the x-axis
upstream and downstream of the airfoil and on the surface of
the airfoil. The resulting integral equation then becomes:
- -1 oo
u ~ ~
Di_=_‘_f U(§)£—+—'—J‘ we) 95
oX ﬂ_w H-¢ 7 Y H-€
(2.20)

The general procedure used in this calculation method is
to represent the prescribed function f(x#) along the airfoil
surface by a linear combination of basis functions, in this case,
powers of H:
f(x)= 2 a xi -1<n<l (2.21)
i=0 !

or,
2 i
f(H)=i (1-% )ﬂiH -1<n<t (2.22)
i=0

Both functions have been tested, along with several other basis
functions. The polynomial (2.21) yields better results and the
remainder of this chapter will be devoted to computation
methods using the polynomial (2.21).

The coefficients aj are unknown and the function f(&) is

a polynomial of degree n. We solve for the coefficients a; from



equation (2.20). These values will depend on the choice of the

quadrature points R j and the degree of the power series. The

integral operand in the airfoil integral equation is not a .
continuous function on [-1, 1] and the equation (2.20) is a
singular integral equation which can be solved using the Cauchy
principal values on the interval [-1, 1] . Replacing f(#) by a

power series, equation (2.20) may be written as:
-1 o0

24 1 ﬁ(g)_dé_»f.l_'ﬁj(g)_dé_
R R-€
1 ] (2.23)

A Yas [

w i=0 -1 | H'é

The last integral of the right hand side can be conveniently
evaluated term by term by using the Cauchy principal values

given in the appendix:

1
ao J._dé_ = a |n(.!_ﬁ)

H-¢ 0 1-u
(2.24)

o ;gs”'[um(

I+“)-2]
'_] H—g 1-1

Finally any term of degree i can be written as a function of the

term of degree i-1:

21



. 1 i
j—i'—dg - x j L '—"LI’—”— (2.25)

In equation (2.23), the coefficients a; are unknown and

we define a set of n+1 collocation points ® jas shown in figure
2.3, where the integral equation (2.23) is to be evaluated at
each point. The basic integral (2.23) can be expressed at any
point & jasa linear combination of the coefficients, a; . This
coefficients are obtained by numerical integration and are a

function of the geometry of the airfoil. Application of the

above conditions gives a set of n+1 linear equations for the n+1

unknown values of a;.

2.4.1 Numerical Solution for Symmetrical Flow Fiel
Consider first the case of a symmetrical airfoil at zero
angle of attack. We see that the disturbance velocities U(x)

and W(x) are null. Inspection of (2.23) yields the expression:
(2.26)

where |; is the Cauchy integral of degree i, obtained from the

integration of the basis functions. If we use the basis

functions given by equation (2.21), and note that:

22



Figure 2.3

n=9 collocation points

23
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u
f(x) = (1 + 22y dn (2.27)
oR dH
we obtain:
(I+—L)—IL iau (2.28)
dx i=0
Solving of ¢, , and substituting into equation (2.26) yields:
i ?° _TL = -1 (2.29)

This equation applies atany » j location between -1 and +1.
Applying this equation at n+1 points yields n+1 equations for
the n+1 unknowns.The coefficients of a; are called m; j and

define a matrix of dimension n+1. The solution to the airfoil

equations is finally obtained by inverting the matrix m; j by

Gaussian triangularization and the coefficients of the function
f(#) are given by:

a; = n{IJ L (-I)j

The computational time to solve the matrix by
triangularization is less than 5 seconds using the CDC Dual
Cyber System for a matrix of dimension no larger than 40. The

computing time is independent of the geometry of the airfoil,
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however it is dependent of the number of collocation points n.
In order to reduce the round-off errors, we compute the matrix
with double precision variables with 16 decimal accuracy
which is useful for a matrix of dimension higher than 30 since
the determinant of the matrix is a small number. The solution
breaks down for n240. This difficulty is caused by small *
valuesin the determinant when n is large. For high values of n,
quantities of similar values are substracted in the calculation

of the determinant which results in a dangerous loss of
accuracy in the value of the determinant. consequently, the
accuracy decreases as the number of quadrature points
increases. On the other hand, using a small number of points
may not be sufficient to define the shape of the body especially
very near the leading or stagnation point. However, for
sufficiently small n the use of single precision variables

allows a quicker computing time and the single precision
calculation gives satisfactory results. Finally the pressure

distribution is obtained by substituting the values a; into the

following expression:

cp=1-[rw] [ (ﬁ]_) (2.30)

with f(x) = i J L (2.31)
i=1
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2.4.2 Numerical Pr re for Non-Symmetrical Flow Fiel

In addition to the solution of the basic potential flow
problem over a symmetrical airfoil at zero angle of attack, fhe
solution to the non-symmetrical flow field has been
incorporated into the numerical method. For this case, the
upwash U(®) and downwash W(x) are unknown. Consequently,
both the upper and lower planes must be solved simultaneously
and the solutions must be matched along the cut. A possible
methodology is to use some initial guess for V(1) and W(x#) and
iterate until the change in the upwash and downwash is
sufficiently small. The set of equations for this methodology
are given below:

2081 U(&)ﬁ- 'jw(é)
ox

(2.32)

8

-1
oL
2l 1 [ ey &
- "—L ve) &~ 1 ljw(z;) &

- —j[( cosa + L)—TL sina ]ﬁ- (2.33)
% &

H-§

An alternative approach, .and one which proves to be

superior, is to use an approximate representation for V(%) and
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(%) and avoid the iteration procedure. This is accomplished
by representing the actual airfoil by an "equivalent” Joukowsky
airfoil of the same thickness for the purpose of obtaining D(x)
and W(x) only. This procedure yields an approximate
representation for the upwash and downwash. An extensive
numerical investigation showed that the solution to (2.32) and
(2.33) is sufficiently insensitive to this approximation to

justify its application. A lengthy analysis is necessary to
describe the flow about a Joukowsky airfoil and the details of
the calculation are given in appendix A. The resulit for the
upwash and downwash disturbance velocities are given by the

following expressions:

— ——
)= /B 2N 4 4 | | lsina (2.34)
K+l >

Wwx)=_ [ B=L 4 4 | _; |sina (2.35)
Y =

It should also be remembered that in the Joukowsky calculation
the position of the leading edge is slighty different than -1 ,
for example it is equal to -1.014405 for a thickness of 12%.
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The upwash and downwash integral terms of equations
(2.32) and (2.33) are solved numerically by a simple
trapezoidal rule. Boundary conditions on the airfoil surface are
applied and the matrix elements are calculated using the same
set of points distributed on the airfoil surface as for the
symmetrical flow. Although there will be some additional
terms in the calculation of the matrix elements, the numerical
procedure remains the same. The matrix elements may be

written as:

r o
-1
| Hl

.. . -1 u oo
AL 1 (¢ e _ 1
ai LU I ;-[ U(g)ﬂ_..é ;J‘ R -E
OH. . =00 J 1
J
1+8 .
I—-I' -cosa (2.36)

A similar set of matrix elements applies for the lower plane.

+sina In

2.5  Approximation of th rface Boun n_Quadratur
Points
The integral equation described in the previous section is
to be evaluated at a set of points ® j distributed on the airfoil
surface as shown in figure 2.3. Special attention should be

taken when choosing the quadrature points since the accuracy

of the calculation is fully determined by the number and the
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distribution of the set of points. The quadrature of order n+1
determines the number of unknown coefficients of the
previously described function f(x).

The spacing of the points must be small compared to the
dimensions of the airfoil. In addition the local curvature of the
airfoil should be considered in the point distribution. The
proper distribution of the points over the airfoil surface will
be largely a matter of experience and intuituion. As a first
approach and one that proves to give satisfactory results, we
use a set of equally spaced points along the x-axis of the
airfoil. The first point is located at a distance d from the
leading edge with succeding points spaced the same distance d.
However two serious problems arise from the sharp corner at
the trailing edge and from the large slope at the leading edge.
These areas need to be defined by using a higher concentration
of points. A higher order implementation which uses
parabolically varying distances between points has been
applied to the airfoil problem. A high concentration of points
occurs at the leading and trailing edge and varies toward the
central region of the airfoil where the distribution is sparce.
However, for high order implementations, longer computing
times will be required and loss of accuracy may occur from

round-off errors in the matrix calculation.



2.6 lution of the Inverse Design Problem
2.6.1 Introduction

This section discusses an attempt to design by analytic
means a class of airfoils using a similar methodology as for
the direct problem. The design and development of aerodynamic
bodies is usually an empirical procedure, based primarily upon
the designer's experience and employing trial and error
techniques. For the design problem, analytic solutions are not
as developed as for the direct problem since it is more
difficult and it involves the solution of a free boundary value
problem. However, it is of great importance since for a
desirable pressure distribution we can obtain the corresponding
body shape.

In the literature, solutions to the design problem are
mostly based on iteration techniques due to the absence of
exact mathematical solutions for free boundary value problems.
Marshall [10] presented a technique that removes the free
boundary element by a perturbation procedure. An analytical
solution, using a surface source distribution, is obtained in the
form of integral equations. Nevertheless, the calculation
method uses an initial guess and involves an iteration
procedure. Zedan and Dalton [11] presented a method which
employs an axial source-sink distribution, with constant

element strength, to obtain a solution to the design problem.
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The method proves to be accurate and converges, but it uses an
iteration procedure and the method is also limited to bodies

that do not present a sudden change in the slope of the meridian
line. This present study does not requires any iteration and
even less computational time is necessary than for the direct

calculation.

2.6.2 Mathematical Formulation

In this section, the basic equations for the design
problem with uniform flow field are derived. In this study, the
method uses the surface velocity instead of the pressure as the
prescribed distribution. The design problem can be stated as:
given a surface velocity, what is the body shape that would
produce this velocity distribution?

Again consider an inviscid incompressible flow over a
two-dimensional airfoil. Equation (2.20) of the previous section
remains applicable since the flow conditions remain the same:

This equation is repeated for convenience.

DL"=LJ' 5(¢,£_+LJ.I,(§,1&_
o W R-E W R-¢
-00 ]
l ~
+L [(ccmowﬂud u-SIna d
ot  dg R-&

We are now faced with the problem of finding the shape
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prescribed by dn/dE given the surface velocity. As before, the
function f(x#) may be expressed by a linear combination of
powers of H.
i .
f(»)= i a_H -1<H<1 (2.38)
) i=0 '

where f(R) is given by:

f(x) = (cosa + 22 )20 - §ing = 2 (2.39)

o® " H 2y

Equation (2.38) is evaluated at a set of n+1 quadrature points,

which give a set of n+1 linear equations solved by Gaussian

elimination, to obtain the n+1 values aj. It should be noted that

the x-disturbance velocity is actually the unknown at this point

since the airfoil shape is still unknown. This component is

determined by inserting the coefficients a; in the integral

equation (2.39). A similar procedure as the one used in the
direct problem allows us to calculate the integrals of equation
(2.37) by introducing the Cauchy principal values.

In order to gain better accuracy, the x-disturbance
velocity is evaluated at 200 points along the chord length and
the slope on the airfoil surface is ultimately given by the

equation:
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91+sina
dn_ 2

-1<u<1 ' (2.40)
dx

2, cosa
oH

The treatment of the inverse design ‘problem has been
restricted to uniform flow at a zero degree of angle of attack
which requires a less sophisticated approach since the location
of the stagnation point is known.

Results of both the design and analysis problem
determined by the procedure outlined above are presented in the

next section.



CHAPTER 3
RESULTS FOR THE ANALYSIS MODE

3.1 Introduction

In this chapter, a series of numerical calculations for
different airfoil geometries are presented. The results are
validated by comparison to numerical solutions and analytical
solutions when they exist. A code which was recently
developed at NASA Langley [12] has been selected for purposes
of verification of the present method. This code uses a
spectral multigrid technique and has been extensively validated
with finite difference schemes. In addition to this numerical
verification, the present results are compared to analytical
solutions for elliptical and Joukowski airfoils.

Data are presented in terms of the pressure coefficient
Cp, which is the quantity of usual aerodynamic interest. It is

defined, in general, as:

p-p
cp=—=2 (3.1)

1
—pU
ZP

oo

where p denotes the local pressure. In incompressible

potential flow it is related to the velocity U by :

) P
cp=1- [T] (3.2)
34
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The formulation of the problem, presented in Chapter 2, has
been tested for the flow over a 12% thick elliptic airfoil, a
NACA 0012 airfoil and a 12% thick Joukowski airfoil. A

description of the results follows.

3.2 Implementation of th rature Poin

* Flows have been computed using both equally spaced
points and a higher order implementation. In the first method,
the distribution of the points is simply determined by using a
constant value A for the distance between two consecutive
points. It should be also noted that the distance between the
leading edge and the first collc;cation point as well as the
distance between the last point and the trailing edge is equal
to A
| The second method uses a geometrically increasing grid.

The following equation is applied to determine the spacing

between two consecutive points:

5 = A rd (3.3)

The resulting distribution is shown in Figure 3.1. Moving away
from the leading edge, each one-dimensional grid spacing is
made r times larger until the center of the airfoil is reached.

The parameters A and r are constant values and j denotes the

ith

J"' interval. In order to evaluate the two unknown A and r, we




n=8 collocation points

Sx=Ar3

Figure 3.1
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2
cp=1-—%¢ (3.6)

B

where € denotes the thickness ratio.

Figure 3.2 and figure 3.3 compare the analytical solution
with the calculated solution using 20 and 24 points distributed
on the airfoil surface. Figure 3.2 uses the geometrically
increasing grid and Figure 3.3 uses equally spaced points. The
free stream velocity is parallel to the x-axis of the ellipse and
as can be seen, the two plots are graphically indistinguishable
for N=24. Positions of the points are shown in figures 3.4 and
3.5. Figure 3.2 and 3.3 are representative of several other
calculations which were made using using a larger and smaller

number of points and various types of grid points distributions.

3.4 NACA 0012 Airfoil
The airfoil profile is given by the equation:
g =1.2(.2960V% - .12600x - .35160%°> +.2840%°
'—.1015034) 12120 (3.7)
Two calculated pressure distributions are shown for the NACA
0012 airfoil. One was calculated by using the methodology
discussed in this study . The other distribution was obtained

from a NASA computer code [8] and used as a comparison. As
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illustrated in figures 3.6, 3.7 and 3.8, the two results are
indistinguishable over the central region. Agreement with the
NASA computer code can be improved at the trailing edge by
adopting the variable grid scheme given by equation (3.3). This
improvement can be seen by comparing figures 3.6 and 3.7, but
it should be noted that a slight loss of accuracy occurs in the
region of the leading edge when using the geometrically
increasing grid. Positions of the points are shown in figures

3.9 and 3.10 for the distributions of figures 3.7 and 3.8.

The calculations were repeated for different sets of
quadrature points and the method has proven to give consistent
results over a range of 15 to 30 points distributed over the
airfoil surface. For N greater than approximatly 35, the
accuracy begins to decrease due to the increasing matrix
round-off error. A number of points smaller than 15 does not
give an accurate description of the airfoil geometry. The
calculated pressure coefficient exhibits a small repeated error
very near the leading edge. This behavior can be explained by
the difficulty that occurs when fitting a polynomial function
over the region of large velocity gradients, e.g. the leading edge
region. Slight changes in the locations and the number of the

quadrature points can improve the accuracy of the curve.
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3.5 NACA 001 4 and 10 Degrees Angle of A

Figures 3.11, 3.12 and 3.13 show pressure distributions
on the airfoil at 4 degrees angle of attack and figure 3.14
shows calculated results for 10 degrees. Two curves are
shown for each figure. One corresponds to the pressure
distribution on the lower plane and the other is the pressure
distribution on the upper plane. It should be remembered that
the distributions for both the lower plane and the upper plane
are independantly calculated and the solutions are matched
along the x-axis upstream and downstream of the airfoil.

In figure 3.11, a equally spaced grid has been used while
in figures 3.12 to 3.19 a geometrically increasing grid has been
used. In figure 3.11, the calculated distribution and the
distribution obtained from the NASA code [9] are virtually
identical. Again agreement with the NASA code is excellent in
figures 3.12 and 3.13. Note that for a slight change of angle of
attack from 0 to 4 degrees, the maximum peak of the pressure
distribution experiences a change from approximately -0.5 to
-1.5. For 10 degrees angle of attack shown in figures 3.14 and
3.15, the upper plane calculation gives reasonably accurate
results, while the lower plane calculation gives almost
identical results compared to the data [13]. Positions of the
collocation points are given by the variable grid scheme

described in section 3.2 . The calculated Cp is slightly less
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than the reference data in most of the upper central plane
region. It should be noted that the trailing and leading edge

regions are in close agreement with the data [9].

3.6  Joukowski Airfoil
Figure 3.16 shows the computed pressure distribution for
the case of the symmetrical Joukowski airfoil in a steady flow
at a zero degree angle of attack. A comparison is made with
the calculated pressure distribution obtained by using a
transformed plane and the Joukowski transformation. Details
about the calculation procedure can be found in reference [14].
The polynomial surface pressure distribution deviates
quite seriously over the region of the negative high pressure
peak, toward the leading edge. The correlation is quite

reasonable on the surface of the right half airfoil plane toward

the trailing edge and the general trend of the Cp polynomial

curve is in good agreement with the calculated curve. The main
problem occurs in the region of the negative high pressure peak
where the pressure distribution is overpredicted. Extensive
calculations were made in an effort to improve the agreement.
Different polynomial approximation schemes were used and the
analytical solutions were carefully checked. In all cases, the
present method consistently overpredicted the negative

pressure peak. It has been concluded that this error is probably
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due to the error introduced in the conformal mapping which
produces a slightly displaced leading edge. As noted in section
2.4.2, this error is approximatly 1.5% for the 12% thick
Joukowski airfoil. It should be noted, that similar
disagreements have been observed by other investigators [12].

Figures 3.17, 3.18 and 3.19 show pressure distribution
calculations made for different grid point distribUtions.

Positions of the points are shown in figures 3.20 and 3.21. An
important aspect is that the computation procedure gives
consistent results using different grid point distributions.

The essential difference between a cusped trailing edge
and a trailing edge of finite angle is evident from a comparison
of figure 3.7 (NACA 0012 airfoil) and figure 3.18 (Joukowski
airfoil). The behavior of the flow at the trailing edge is
accuratly calculated by the polynomial method as shown in
figure 3.18 and the correlation for both the polynomial and
theoretical curves agree well in the trailing edge region.

The calculations for the flow about the symmetrical
Joukowski airfoil of thickness 12% were repeatead at 4 and 10
degrees of angle of attack. The calculated pressure
distributions are compared with the analytic solution in
figures 3.22 and 3.23. For the lower curve of figure 3.22, both
pressure distributions are virtually identical. The largest

disagreement occurs near the negative high pressure peak.
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Nevertheless, it can be seen that the calculated pressure
distribution is in close agreement with the theoritical
distribution near the trailing edge. Slight changes in the
locations of the collocation points do not significantly affect

the shape of the polynomial curve.

3.7 Inverse Design Results
The problem of solving for the body shape given the

surface velocity distribution uses essentially the same
approach as the direct problem. The calculation procedure is
described in detail in chapter 2. However, the technique is not
based on an iteration technique as most design methods found
in the literature.

The surface velocity distributions used were exact
solutions for the cylinder, the elliptic airfoil and the
Joukowski airfoil and a numerical approximation for the NACA
0012 airfoil. The calculated body shape is compared to the
exact body to evaluate the accuracy of the method.

Figures 3.24, 3.25, 3.26 and 3.27 show the Y-component
of the surface velocity for the 4 described airfoils. Figures
3.28, 3.29, 3.30 and 3.31 show the calculated and exact shape
for the 4 airfoils. Using 24 equally spaced quadrature points,

both the calculated and the exact shape are indistinguishable




for the cylinder, the elliptic airfoil and the Joukowski airfoil.
In the NACA 0012 airfoil case, the agreements for both curves
are quite good. The calculated shape is slightly underestimated
in the region of larger thickness. .However, we should
remember that the surface velocity distribution for the NACA
0012 airfoil is not exact but obtained from a NASA code [12].
The imprecision in the NASA data could cause the small but not
negligible errror of the calculated shape. Another
consideration is that the error occurs in the high pressure peak
region which also presented an error for the direct calculation.
The design calculation presents less error everywhere as
compared to the direct calculation and particularly near the

leading and trailing edge.
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CHAPTER 4
CORRECTION FACTOR FOR THE
COMPRESSIBLE CALCULATION

4.1 Introduction

This section presents an analysis for the problem of
predicting the surface pressure distribution over a
two-dimensional airfoil in a steady compressible potential
flow. The flow field under consideration is inviscid,
irrotational and the outer free stream velocity is limited to
Mach numbers less than one. The main purpose of this section
is to develop a numerical procedure that can be applied when
the incompressible assumption is not valid.

The solution procedure is similar to the incompressible
flow calculation described in the preceding sections. The
solution is reached in two steps. The initial pressure
distribution is obtained by using the incompressible flow
calculation and the solution is converted into the corresponding
compressible solution by means of subsequent iterations which
take into account the compressibility effect. The procedure is
repeated until the solution converges. Details about the

calculation method are fully described in the next sections.
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42 Potential calculation method for compressible flow
The equations are substantially modified to take into
account the compressibility factor. However, the calculation
procedure remains the same. The problem is divided into an
upper and lower plane as shown in Figure 2.2 and the
mathematical problem will be solved independantly for the
lower and upper plane. The outer flow field is described by the

following nonlinear system of equations for the upper plane:

v2 0¥ = M2 1Y) (4.1)

21 = f(r) (4.2)
oy
y=s(x)

where,

=162 2
H(o) = [¢H O™ 2 9, ¢y ¢Hg +¢g ¢gy ]

+x:L[ 2,021 ]
5 (¢H+¢g )(¢HH+¢99) (4.3)

On the solid surface of the airfoil the total velocity has to

satisfy the tangency condition:
[ B(x) -o < H<-a

u
[ﬂ] =] 2238 _acuc<a (4.4)
2y oK OH

y=s(x)

| W(x) a<H<+00

A similar set of equations can be derived for the lower half



plane.

A successive approximation approach similar to the
Rayleigh-Janzen method (2) will be adopted and we will iterate
upon the solution for the compressible flow field. In order to

apply this procedure, the maximum local Mach number will be

.restricted to values less than one. Using this approach and

denoting each iteration with the superscript (n), equation 4.1
and 4.2 can be rewritten as shown below:
(ne1) 5, M

V2! =MH  (w,y)
[ U(x) -0 < K <-a
u
[ 20 e e
2y oH OH
y=s(x)
| W(x) a<Hy<+oo

The advantage of this approach is that for each
approximation, the equations are linear and we can exploit
several analytical techniques. For each approximation, we can
decompose the potential function into the known freestream
value plus the disturbance due to the airfoil. This follows from
the linearity of the differential equation, and does not imply a

small disturbance approximation.
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We have:
ot,) = ¢__+06 (1,y) (4.7)
DG)=U  + D () (4.8)
o0
Ww(xn) = ww + IIJ (%) (4.9)

Where U (1) and W (&) represent the unknown upstream

and downstream influence of the airfoil. Substituting these

expressions into equation 4.5 and 4.6 yields,

~u(l’l+” 5 u(n)
v24 M U (1) (4.10)
u(n) (n)
~ u
20 =1 (n) (4.11)
2y
y=s(x)
o, 0y >0 as [#| o0 (4.12)
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In equation 5.11, fU(x) is now given by:
V() H<-a
u u u
fo0=| s ds__y " (4.13)
(¢H+¢°°H) g Voo | % <@
| W (#) x>a
It will be advantageous to rewrite H(x,y) as shown below,
H(x,y) = H, (#,Y) + Hy(R,Y)
where,
1 2 d .\ ,2
H H, == - —)V 4.14
m( Y 2(¢HDH+¢ng) ( )
' -1 2
HT(H,U) = 12—[ (v -1) V2¢] (4.15)
2_.2.42
v ¢H + q)u (4.16)
The system of equations given by 4.10 through 4.16 can
now be solved in both the upper and lower planes. At each
iteration, the solution is matched along the x-axis for |®|>a.
This constraint, along with the requirement given below,
uniquely determines the flow field,
V() >0 as x| -—oo (4.17)
IV () >0 as [x| - oo (4.18)
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W (+a) = [%3—] - (4.19)
H=+8

4.3 Iteration pr re for th mmetrical flow

In order to illustrate the salient feature of the method,
the less complicated case of a symmetrical flow will be
considered. For this case, the upper and lower problems

uncouple, i.e. ,

D)= W G) = 0 (4.20)
and we can drop the superscript (u). The basic, n=0,
approximation corresponding to the incompressible case is
given in chapter 2. The incompressible flow solution serves as
the basic, n=0, solution to the compressible flow problem. To
compute a second approximation, the following system must be

solved.

@ |
v25  =M? (” (1,4) (4.21)

(2)
- D (4.22)

y=s(x)

Q) _(2)
o8 , 0y —0 as x|l oo (4.23)

In equation 4.21 we used the result qu)(” = 0, to eliminate the



HT“ )(H,g) term. Taking the Fourier transform and eliminating

the 0(c2) term, we find the following solution.
(2) (2) 9 00+00

20 - O%H M JIH (Q,T])[J —-é-]dédn

Ox oR

The real advantage of this approach is that the surface
integral in equation 4.24 can be simplified to a line integral.
This is accomplished as follows: Using the operator form of

H, (En) , applying integration by parts, and invoking the

Integral Mean Value Theorem to remove p2 , the surface

integral reduces to,

OO+ OO0 K
[J;:LVK uagamj( H“% ) =60

In this expression, KD(H,U:E,TIJ is the kernel function given in
equation 4.24 and K, = aKD/ oH. The advantage of this

re-formulation now becomes apparent. Applying Green's
theorem to the surface integral, we see that it becomes zero,

and the final result becomes,

(4.24)

dg
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2 ¥
oq; o¢ .1 J‘ f (E,.)[ (1)2] :;-g 2d§
H 2 (1-£)" +(y-s)

(4.25)

Equation 4.25 represents a Fredholm integral equation which
can be solved for a¢/a4. The term in brackets represent the
first compressibility correction to the basic (incompressible)
flow solution.

Successive approximations can now be determined
immediately, once the differential system is stated. For
example, the third approximation is given by,

2)

_(3) (2)
V2¢ =M [ (H,y)+H (H,g)] (4.26)

which becomes,

(3)
v23 _MZ H(Z) M4-Y-5!-(U )(2) :':) (4.27)

The associated surface boundary condition is

e
- 3 (4.28)

y=s(x)
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and the solution is given by:
3 _Q) +a

- 2 2
20 _ 2 1 ({2 M, (2) £) d
2 AM . "-J;f @My K (,4:8) dt

: +a 1 M4 “)2 (2)2
+;-ff © M -nu W DK 30 d
-a

(4.29)

In equation 4.29, K, (#,y,£) is determined by:

K (1,y:0) = ;"5 - (4.30)
(x-&) +(y-s)
Higher approximation, i.e., n24, can now be found by inspection,

once the differencial equation is written.

44 Numerical results

A numerical result is presented for a symmetrical flow
over the airfoil NACA 0012. The calculation is validated by
comparison with another numerical computation from the
computer code developed at NASA Langley [12].

An abbreviated iteration scheme was adapted for solving
the compressible flow. This scheme is different from the
derived relation given by equation (4.29) which was used in
reference [9]. It includes only the first correction term given

by equation (4.25), however, an iteration in the computer
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program is performed on the integral equation until the
solution reaches a converged value. The series of equations

used for this approach are shown below for n<3.

(@ () 1 2

M 2
L1 (1) oo (1)
-iaa —?LOH "jfta) —=q K d (4.31)

@ _m g M2 2
20 _ 2% +_:1_j f(g)m_“;q(z’ K, (4.32)

o o 2

L@ (3)M2 32

20 .20

=22 _[f(?,) ——a K, d (4.33)

A subroutine was added to the code to compute the
compressible flow from the results of the incompressible
calculation. Results are presented in terms of the
compressible pressure coefficient which is given by:

r

—
2 2
C =——||1+2 (u -q9 (4.34)

Zaz > .

2
oo )

Figure 4.1 shows the numerical solution using a
polynomial of degrée 20 with equally spaced points for a
subsonic flow at M=.6 . The figure demonstrates the effect of
the 3 successive iterations and also-shows the convergence

trend. The first iteration shows a considerabie inaccuracy
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compared to the NASA code solution and the second and third
iterations are in good agreement with the NASA solution. Itis
found that convergence occurs after 3 iterative calculations
and additional itefations do not achieve better convergence.
Thirty seconds of computer time on the CDC Dual Cyber were

required to produce the resuit shown in Figure 4.1.
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CHAPTER 5
CONCLUSIONS

Based on the cases examined, the computer programs
performed well for two-dimensional airfoils of arbitrary
thickness at moderate angle of attack. All the results were
very accurate with the exeption of the Joukowski airfoil. The
problem may be caused by the presence of the cusped trailing
edge which introduces an additional condition. More likely, it
is due to the error introduced in the conformal mapping. Hess
[15] encountered similar difficulties when calculating the
surface pressure distribution for airfoils with very thin
trailing edges using a surface singularity distributions method.
Hess used an additional parabolic vorticity variation that
provided a satisfactory solution for thin trailing-edge airfoils.
Using a similar method, Zedan [11] solved the direct and inverse
problems of potential flow around an axisymmetric body using
an axial source distribution. However, Zedan's method also had
difficulty when solving the flow around airfoils with sharp
corners or sudden changes in slope.

In this study, the polynomial method provided an
efficient and satisfactory solution to two-dimensional flow
problems for airfoils with finite trailing edge angles.

The use of double precision variables has proven to be
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useful and gives stable and consistent results. Accurate
solutions for the surface pressure distribution can be obtained
on most airfoils by using 20 to 30 collocation points,
especially if the calculation is made using the geometrically
increasing grid. A typical case using 24 collocation points
requires less than 10 seconds of computer time. One of the
most important features of the method is its ability to deal
with airfoils of any shapes by adjusting the value of the slope

in the subroutine of the main computer program.



APPENDIX A
IDEAL FLOW OVER A JOUKOWSKI AIRFOIL
UPWASH AND DOWNWASH VELOCITY CALCULATION

A-1 Introduction

The upwash and downwash velocities given by the
equations 2.31 and 2.32 are obtained by approximating the real
airfoil with an equivalent Joukowski airfoil of the same
thickness. The solution for the flow about the Joukowski
airfoil is accomplished using the traditional transformed plane
and then the solution is shifted back into the real piane. The
Joukowski method has the ad\}antage that it determines the
flow field anywhere in the real plane. In the present appendix
we make an extensive study on the y-component of the velocity
along the x-axis upstream and downstream of the airfoil as

shown in figure A-1.

A-2  Flow k i airfoil
Referring to figure A-2, we consider the transformation

z=§+c2/§ from the transformed plane into the real plane, in
which z=x+iy and {=E&+in are complex variables. The

transformation maps the circle of radius rg centered at the

origin of the { plane into a Joukowski airfoil in the physical
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plane, whose chord is sligtly greater than 2. In partic[Jlar, the
point {=1 is mapped into the sharp trailing edge of the airfoil.
The shape of the airfoil is controlled by varying the two

parameters m and §. For the present calculation, the airfoil

becomes a symmetrical airfoil when 8=m. The radius rg of the

circle and the angle B shown in figure 1 can be expressed in

terms of m and d.

J 2
r0= 1-2 m cosd +m
-1] _m.sind
=tan |————
p=ta [ 1-m cos_8]
These expressions will be used in the later analysis. The
varialbies m and d which describe the displacement of the

circle center in the { plane are directly related to the camber

ratio and to the thickness ratio by the following relations:

M Sing=2 8

c _ |

_mcoss-_- __‘.‘_..t.
c 3 3|

where 1 is the total length of the chord of the airfoil. Finally

we have a complete description of the airfoil parameters with
¢ which describes the position where the circle in the { plane

cuts the &-axis and we note that ¢ is given by:
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e_1
1 4
Under the same transformation, a uniform flow in the
plane which makes an angle a with the horizontal x-axis, maps
into a uniform flow with the same orientation in the physical
plane. Let F be the complex potential of the flow in the
plane, the complex potential consists of a uniform flow about a
cylinder with the proper circulation that satisfies the Kutta
condition in the real plane. In the current notation, the

potential is:

2
F=U C+P +|——|n£-

where:
~ i -1
C=[ C-o-mela]e @
In order to satisfy the Kutta condition, the rear stagnation

point needs to be positionned at an angle a+p which yields the

relation:
sin(o+p) =

4nr_U
0

The complex velocity of the flow about the airfoil is then

derived by the equation:

(A7)

(A.8)



A

= df
w(z) iz (A.9)

the inverse of the Joukowski transformation is:

-z, /32- 2 A.10
4 >t (2) c (A.10)

We also have by definition W(z)=u-iv

Inserting A.7 and A.10 into equation A.6, F ¢can be written as:

2 - rre'”
P=lze [2_ L e D
2 4 4 2
'Z‘i z_.—l +m
2 4 4
2
+2rjisinaln| 2, (2 _1.q (A.11)
2 4 4

After taking the derivative of F and separating the real and
imaginary part, the y-component of the velocity along the

x-axis upstream and downstream of the airfoil is given by:
12
[

()= sino
#+1 2
", /“__ 1 im
| 2 4 4 ]

The mathematical problem for the equivalent Joukowski

(A.12)

airfoil is now stated as follows: For a given airfoil with a
specified thickness at a given angle of attack o , we have

determined an approximation for the y-component of the
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velocity upstream and downstream of the airfoil by using an
“equivalent Joukowski airfoil with same specified thickness and
angle of attack. Note that the position of the leading edge of
the described Joukowski airfoil is unknown. It may be
calculated using the transformation and referring to figure 2,
we have:
in
=be A.13
g (A.13)
The parameter, b is given by:
LIS r_:{ cos(5-11) -coss) (A.14)
>
Using the definition of the transformation yields,
: 2
1|/
z=be " +_C (A.15)
in
be

The x-coordinate of the leading edge is obtained by taking the
real part of A.15. For example, for a symmetrical Joukowski

airfoil with a specified thickness of 12% , we have:

Ry = -1.014405264 (A.16)
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APPENDIX B
AIRFOIL INTEGRALS

The following are the Cauchy principal values for x2 <1

_IH— -H
1
s e ]
-1
1
3 2 1+8 _ 2
WERE TN
1 1 n
. f;n_dgqj';nid&_l-(—n
Sy RS 5y B "
' 1
6 J g = 0
2
-1V 1-£€ (®-¢)




8. I e2
-1V I-éz (®-§)

10.

12.

13.

15.

1
d€ = -1 x

IJT(H&)
j d§=.-118[82+—;-]

-1V 1-82 (x-¢)
j -,,[,.4+L,,2+..3_]
J__‘ 2 8
—é (Hé)
[ RN
-1 & ( R-E)
f dg—xJ' gh ! de -
1V1-£2 (»-t) 1-82 (x-£)

It nl1@)...((1n-2)
2 [ 1-(-1) ]2(4)...(n-l)
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CALL AXIS(7 el92e29 9 3€e9T0e999%e9ie)
c CALL ORIGIN(Z.c".gg.)
C-- .----------------------------_------------—---------------------.
c DZSIGNATION OF THE CURMES

CALL PLOT(eS35e75s2)

CALL PLOT(e835e7592)

IF TeEQel) CALL SYMBOL(1¢954759e19"SXACT ANALYTICAL®90esl€)
sEQeS o0Re KAI.bQ. vORe KAI«Z@e7) THEN
HBQL(l e3-07Se8ele *THZORETICAL® 0.’11

«82) CaALL oYHBQL(l.,5-75’.-,'THEOR TICAL®sZesll)
o eORe KAlefGed THEN
YMBCL(legSe 7T5sele "NUMERICAL TAB [121%4Ce918)

«EQed) CALL SYMBCL(le95¢759eZ 9 NUMERICAL DATALL131%

e @ e
rm
[7e]-»] »] U?

(KA
(KA

A
DIF
(KA
(KA

A
DIF
(KA
118

(7]
T
YRE SRE R
X (VX XK 4 O X

CAL INE(X3
CALL LINE(X1
IF(ALPHAWNEZ o

CALL SYMBOL (.5

'™
. (3
Mle

12
L LINE(X2yCP29yN1gle=5s1)

&N
[l

«CP
sCP
(Ce

we )
b- Xl i8]
e w

N
;]
+

w

-

2ioles=l)

-

<
CALL SYMBOL(1 19 POLYNOMIAL N=%5%es13)
CALL NUMBZR (2 .

1oFLOATC(N) 9S50 33
IF(IPOSeE@e2)

CALL SYMBOL€%asSe7Sselyg'R=0404y2) s
enpSALL NUMBER (4e3 95759019 SNELIR) 9 Ceyli)
IFCIPOLYeSGeZ) CALL SYMBCL(%e35eSeels®POLY=2%9C¢ 96)
IF(IPOLY cCGe3) CALL SYMBOL(#es5e59e19 POLY=3%55e 96)
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PRECTER P L

"

»YJOUKOMSKI AIRFOIL ALPHAZ%33es25)

IF(KAI.CGet) CALL SYMBCL(ezel.zbcoza

$3*JOUKOWSKI AIRFOIL ALEHA=E 9,253 253

IF(KAI+EGe7) CALL SYMECL(eZ9bezSpasd

$,0 JOUKOQWSKI AIRFOIL ALPHAZI %sNes26)

8ALL PLOT(=45s-e59599) ORIGINAL paGg 1
T OYOANYE OF POOR

R=T QUALITY

c

ct* LR A2 2 A AL 2l s staild Al X A2 dd¢ii 222222 2R 2222222 XXz REZZEREE RS

SUBROUTINE DFDX(ZeKAIgXsKAZ)

ct’ [T X X212 XL XL A2 R R 4l s it i s s st ssi iR IEIR 2222222 RS2SRRSR RS

SUEPROGRAM THAT CALCULATES THZ DERIVATIVZ OF THE AIRFOIL
DOUBLE PRECISION ZoX

ELLIPTIC AIRFOIL
IF(KAI«EGel) Z==(e12D¢{)*X/DSART(LI e0+2)=X*X)

CYLINDER
IF(KAI+EGe8) Z==X/DSGRT((leL+2)=X=xX)

NACAT212
.IF(KAI+EQe2 oORe KAI
2=(1e2D+L)2( (alT74223
(20¢3))=(o0520
0)=((
033/¢

oM OO0 OO0 OO0

LA X R -
(O F e L")
» e
%9 Ny
~EINT
m
s 2

N+

+( 424D+
_ (((X+(1aD+
INCIF

C

c JOUKQK

IF(KAI
®
D

AN

N $De
e WeiM
Crdwefd
o we
2 AN
weo 8 O

wCrGiNe
% L0
#1200
o (Dot 9
INwCIm

o Nt X
[ T8} P
R
Cre Ny
wlApem
wédme D
Ll { ol )

N
(leDe3)=X=xX))

JH

Z=( (4
s >

INDIF -
IF(KA24E@e2) Z==2

RZTURN
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N1
MDV

HT
T)e
RT(
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c

Ct'. i***Qi**f'***ti**t*itttttt***t*****tttit***i*'***I***Q****t*** L 4 & 4

SUBROUTINE VELZXT(SX9ALZ2sX)

c*' (222222222 2 L2 2222222 22 R lll i sttt st 2ss s 2t sl s la s R

c
g, CALCULATES THE yUPWASH AND DCOWNWASH VZLGCITIES
DOUBLE PRZCISION VEL oXLoALZ9RMpXSLZ 9SXeX P11
PI=3.1415926‘43*§Q
c RM= OZFFICIENT FOR_THZ UPHWASH AND DOWNWASH JOUKOWSKY
c CALCULATION OF THt —XTZRNAL VCLOCITY
E RM=SGRT(THICKNZSS*THICKNESS/Z27+CAMEER=CAMBER/4)
RM=a046188020+ .
XSLE==1401464252640+2
c XL==(leD+2)=(aZ20¢ )/ 2 e*3)
c L L X X U X A K ¥ ¥ R ¥ T T ¥ ; ¥ ¥ N L X K 2 % T ¥ X X T X 2 1 Y JF X T T T R T R L X 22 T & X 1 1 X K L A 1 1 2 & X 2 2 J
C UPWASH CALCULATION

DO 25 IL=is530



7%% D+0)
s+ - DRI
SGRT(XS*XS/
;(4.u+c> (.450*"))*RH))**(4.D 21§(AL2> Xs
SX=SX+VT L*(.ozn+9)/(x-xL) QU
25 XL=XL~=(e223¢ 7} ALITy

i‘ c-- D I S G DD A D S P G D G ST G G R D D e G S I S R O YD T G R Y A AP S O A G G AP AP P an W A

- C DOWNMASH CALCULATICN
XL= (lou+“)’(oagﬂf Y/ (2.D+7)
00 26 IL=1,457
XS=(le0+2)~ ((l-D+") XL)}» ((1l D+
VIL=(DSBRT (( XS~ (l.D*“)lI(X°+(I.
SOSURTAXS*XS/(4 40+ ) (.;-D*:))!{
I

b
7 - e (
$DSQRT(XS*XS/(4.D+ ={el2S0+7))
+
/

$(4eD+0)=(a250+5))+RMII*» (2 o D!
SX=SX+VEIL *(a 02D+3)/(X=XL)/P
26 AL=XL+ (e 2D+ L)
REZTURN
END

L2 R i2 sttt iats st lElld sl ssss iR assIa eI 2 22X 22 XXX 32X 2 X 38 J

SUBROUTINE GAUSS(AgNCIZTER)

1T 2i2 212222322222 a2 R sl s s 22X i 2222222 28222222 X2t 22222222

GAUSS~-JCRDAN REDUCTION

THIS SUBPROGRAM FINGS THE SOLUTION VMECTOR CORRCZSPONDING TO A
SZIT OF N SIMULTANZOUS LINZAR ZGUATIONS USING THE GAUSS-JORDAN
RESCUCTION ALGORITHM WITH THE DIAGONAL PIVOT STRATEGY.

OOUBL’DPg*CISIQN ALSCeZ1)9CETTRHEPS

(gle]

(elealnlnlelyl

()

seeoee EEGIN ELIMINATION PROCCIDURE ceeee
D-TLR—(’.D*")
D0 9 K=l
esssee UPDATE THE QETERFINANT VALUL ceevee
DZTER=DETLR=A(Ks
eceoe CHECK FOR PIVUT SLEMZINT TOO SMALL eccee
IF(DABS(A(K,K)).GT-EPS) 60 T0 =
60 Yo 7 _
Cc R};i" NORMAL IZE THE PIVOT ROY ceeece
— ’

DO 6 J=KPIsNPLUSM

&6 A(K’J)-A(K'J)/A(K'K)

ACK9K)=1el42 _ ~ -

c essoeoe TLIMINATE K(TH) CCLUMN ELEMENTS EXECPT FOR PIVOT eecee

ORe A(IsK)EGa(Col+3) ) G0 TO 31
PLUSM
)-A(I'K)*ﬁ(K’J)

(81}

Q
Q
[
[
Ll
"
8 ~~De 1=
Ot X e
tee =
DCZe

Nem MMOPpXe

-
[ I 9¢)
py

ey C=CCH I N
Ew

ALL PIVOT - MATRIX MAY BE SINGULAR?®)




(g T X T2 212X EE LRI LIILLLL 2R AL R 1 2 2 2 4 B 2 2 R g R R e e g e T L 2 2 2 2 2 2 R 2 )

SUBROUTINZ POSIT(XyIgsls IPOSeR)

C*' P TR S22 22 22 R 22 2 2 R &Rt 2R X 2 & 2 % 2 2 R 1T R RIPERergrp ey graprarapranprprg pegry 3 g 2 2 2 R T 3

c
C  SUBPROGRAM THAT IMPLEMENTS THZ LOCATION OF THE SET OF QUADRATURE
¢
c LIST OF THE VARIABLES:
¢ XP LOCATION OF TH: PCINTS
€ Ypos  TYPE GF SPACING. ORIG
c £ OF_SP | ORIG] ~
g R EXPONENTTIAL RATIO ' NAL PGy 1g
¢ & PRS - R QUaLITY
DOUBLE PRECISION XPCS:)yReDELTA$DXsXLsX
IF (IP0SeZG.l
58(%%=3(%o0*3u)*(c-b’ 08)/DBLE (FLOAT(N+1))
XP(J)=XP(J=1)+(ZeD+5)/DELE(FLOATCN+1D)
i~ _ _CONTINUE
. ENDIF
IF(IPOSeEQe2) THEN
NTE=NZZ
NLE=N-NTE
DELTA=(1o0+2)/C((1aD+0)=C(R*¥NLED D/ C(LoD+0)=R))
XL==leil+? Lz
DO 1 J=1sNL:
DX=CELTA+ (Rs*(J=1))
XP (J)=XL*CX/ (2eC+E)
o b XLekiegx
DELTAS(Ze0+53/C((2eb+C)~CRe2+NTZI I/ ((1aD+6)=RD)
XL=l.C*.
DO 2. J=:yNTZ
EX=DELTA# (Re*(J=1))
XP (N+1=d) =XL-DX/ (2eC+2)
2 XL=XL-DX
ENDIF
X=XP (1)
RZTURN
END
c

o8 T ETRZIXXE RIS LIZIRI 222222 2222222222 2222222222222 R 2 XX R R 2

SUEROQUTINE MATiI(AsIsXeIPOLYeN)

I EIXITEZISET I 2232222 2 222 3 2 **i***'tif*'***iti**,****i* L& 22 8 2 8 2 4

DOUBLE PRICISION A(SZsC1)sXsRMT4PIRML

.
. PI=3.1415926540+0
c SUBPROGRAM THAT COMPUTES THE MATRIX ZLEZMENTS
- IFC(IPOLY.ZGe1) THEN
sal:ls—:—ﬁulﬁoﬁ((( leD* ) o XRI/C( 2 eD*2I=XIDII/P]L
- -
ACI3U)=XNA(Tgd=2) =€ (1aD+CC)=DBLE (FLOATC(=1) % (J=1))))/
$ (DBLECFLOAT(U=13)+PI)
: CONTINUZ
ENDIF
IFCIPOLYeZGe2) THEN
ACIs1d=X
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ORJGHVAL PAGE:RS
| OF POOR QuaLrTy

4 (02K 3R 2 K

M Ertow % 4 % %

CEOX
Z 0w ] i€, W e

CcRNUuWHID NN

+2)))
(FLOAT(1-((~=1)=2x(J=1))))

[1¥]
0
Q
-4
~4
La)
g 3.

*Xx X
S+l )Xo Xas X+ (X*23)

+ ¢t
)
o O
[ R X J
-~

P udl, ot g
A (T o 2

Wl
] emte® WO‘;L" HiunhmMm
- 3 Y T TPy S W L

HeLX

OXRZT LUK

~

’
S(FLCATC(IMT/C(INT+2)))
2

(FLOAT(IMT/CINT+1)))
=1)*(eS0+C) *DBLE(FLOAT(L-
BLEC(FLGAT(1=((~1)**(J))))

[4))

)*x(J=1)}))

CH XX H e

(-2
*RM21

Co 11 1 BOOZ U8 TI0
FXA=4D— ¢+ COOO¢w

o

RETURN

[ 2XIX22X22223 222X 222222 X XXX 22223 8 siRasiisasddias ittt

SUBROUTINZ MATZ (AgNeIpXsIPOLY9KAZ2» )

2 R 2212 2 2 Y2 TIZEYRYI2RZ S X222 2R a2 2 222 R xR 2 il gl 2 ¢ R % 22

COUELE PRZCISION A(SZeZ1)sXeleRS

RS=1l.D+C
IF(KAZ2.EGQGez) RS==1le0+%

IFC(IPOLYeEGel) THEN
1)=A(I4i)=-RS/Z

=2’N P
JISACIgJ) RS (Xan(J~2))/2 *
INUZ

O 00N

o

'.&
4 b
md® |0

w2
~ O

} THEN
$1)=RS*CSURT((2.D¢2)=X2X)/Z

sJ)~RS2DSGRT(( 1D+ TI=N2X)s(X*x(J=2))/Z

- O
i e [~
e g
R MY
M2 )

Zw, we
M >

[ AV
(=3 NI AL
e e
e
+ T

=N
RS*DSUGRT(((1eD+C)*X)/((1aD+3)~X2)/2Z
+RS*DSGRT(C(LD+3)+XI/((1aD+0I=XI I = Xwn(U=1))/2
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c _ ORIGINAL PAGE IS
_ RETURN
c ©ND OE POOR QUALITY

C** AR R R AN A AT R P R T R R A A T P T T I N A AR E T AR R A B EN R AR R EARAA NSRS AT AR

SUBROUTINE CPDICAeZsNyPHIXsIPCLY)

Coradaparnrabwtinn AR AR E R R T AN TR AT A RN A P AR A R AR A AR A AN AR R A AR R RN L

g PRESSURE DISTRIBUTION
c DOUBLE PRECISICON A(SiTeE1)9leX
IFCIPOLYeEGel) THEN
PHI=SNGL CAC1gN+2))/SNGLCZ)
DO 1 J=2,eN
PHI:PHI +SNGLCACIoN+1)I I«SNGLIX**(J=1))/SNGL(Z)
i CONTINUE
ENDIF
IFCIPOLYWEGe2) THE
. SgIgSSRI(%.—SNSL(X*X))*SNGL(A(19N+;))ISNGL(Z)
- -ZQ
PHI=PHI+SQRT(1e=SNGLIX=X)I*SNGLCAC(JoN+1) I*SNGLEX2x>(J=1))/
4 SNGL(2)
2 CONTINUE
ENDIF
IFCIPOLYeQe3) THEN
ggl;—iuRT&(1.+s GLEX)I/ZC1a=SNGLECX)))*SNGL(ACIgN+1))I/SNGL(Z)
PHI=PHI-SQRT((l .+ NGL(X))ICI.-SNGL(X)))tSNoL(A(J'N*1))*
3 SNGL(Xx«(J=1))/SNGL(Z)
3 CONTINUEC
c ZNDIF
RETURN
=ZND
c

I ETZIIITELTEL LI DL L L 2L R I EI PR TP PR T LR TR T PR FIURCY FRI 2 RIRIRY PR

SUBROUTINE COMP (NZC9CPeX34KAIICOMP)

T XL X 2R R Y T R T T L T R X R T R B L T 2 R RS R P SRR

C
g READ THE CP DISTRIEUTIGN FGCR COMPARISON
DIMENSICON CP(413)sX3(4-C)eXP1(S5C)eCPI(EL)
o X 2(43)’CP4(4C)’XPG(“U),CPQ(QQ)
. s 2 XP3C73)oCP3(TT) &
i
c DATA FOR NACA . ClZ ALPHA=C
DATA XPl/ZieCGU.0Cs 937865y 9918329 ¢982340Cs 4969515,
3 e3S35E58y e93062%9 21295599 8885739 «861816s
L 4 «8328 04, 8“1769, elEB91 7y 73844709 «698€c58,
L 3 «E61T209 6228984 58543G, 465899 +537593,
3 «2€EBi%% 9 o43.128s eIC21l229 1TA8S69 318658
s «283605 e28S925 9 02177919 1873669 «158834,
$ 0elI22489 L17T8B2l9 «IBSES iy .658489 «£48511,
s e 233727y euU2iS7i9 2120989 705336y «301327y
. s <C581507
DATA CP1/1eLCT7CC0e o3578769 «2525209 «2023T777y 158201,
$ «119568y e7BECZ3y eLTH28Ty «-283219 «093559,
L 3 ~el25251y=et830 2290 AT 9=alB6438 9=l 57666
3 ~el1288829=elSi2509=eiT18879=e193848e=e2l16i29y
: 4 ~e23Bb5C 9=ecfi2Bag=elB3BIs §=e3053429=ea327360s



OO0

oOn

LR X

~e34T76629=a356402~ e3830749~e3970995-.457794

214, 889~04 5372508 9194 9=039 672 g=e263298 0
=e3217269-015€988 440 .8853, e215225, 4755544,
1.52CC 80/

DATA FOR NACA -512 ALPHA=Y COHPR;SSIBL’ FLON M=0.5 ,(”UCzyf,

DATA XP2/14320703%s «99€731y 387540y o373(43s «353575 Op P
s $939474) 301070y 868734y 832823, o793738, R o
s .751896 & e73TT783y o5561T7369 6143489 5663561y UA;
s .51735 . e8587 6y o220STEy 373408y e3276230.

1 «28261 028787y o2.236Z9 1565768y 0132250
s .1:2457, eNTEAS2y o.526169 ¢0337319 018553,
s 208284y «0C2081y 332032/

DATA CP2/140393269, B7il2s 283197y 209395, «1518569

L 4 17223629 .u58212, 31 79389=e193809=a (S5212
s ~e(894649-0123E6159-e2578809=e1928415~02286500
s ~e2656379~ .--3488,-.341979,-.380389,-.417965;
s ~e85321929=¢48884839=e5108244=65285789=e536172
s “e5286589~e5.:26F3~e4420619=e3309399=a131477,
s 0222871y «715t8569179332657

DATA FGR NACA ~ 012 ALPHA=%

DATA XP3/1.£33C009e5967319e98754090973243+0953575,

s e320074945 1 .TCpe8687343683282290733736
s 75189697 °7783906617369618348y 45660619
3 51735598687 069082757 69e3732085e327623
s 2836189028177 9e2523629e1657689013225C
s e13226T9eL75452900526149203373194018953,
s 00083889 .002 8lpetis. 09002 8194008384,
s e2189539e0327319e0526149407545294102767
3 0122750 9el657689e2723629e28278790283514
s 327623943 734089082057 6304687269e517355,
s eS66.619e6187489e6617369e73TT435.7518%60
s WT1G37309eBIC5224.8687349.92127690923474,
s ¢553575¢e9T73°435e9875439996731/

DATA CP3/1.064:72 e3742569 2801799 2282543 171865
3 «128°79 el 2582y «"75360y 251872y 030885,
s ~3I2%¢c1, -.555333, ~e 21803y =oe036427y =eU503639
s ~e0635699 =o 78 (6y =el82602y =e0878659 =eJ88644,
s “e"8I8448y =o¢.TTE2Ty =avd8 0Ty =e213281ly 0353789
s T1E4C6e 271227y +329655, 533311, 7308179
s +9E1978y 1e721316s 3357869 ~e5511499=1.685117,
s c1e813° 3891633127 5=265327789~1e38172F78=1e250222
s 1138 669=1e 257789 =e934280y =e845727y =e762544,
s ~eE6B85259y =,632491y =e544549y =o480336y =-e427631,
s ~e368T229 =e3122879 =e262711y =e2154679 =e163755)
s ~el284925y =4 80(4%s =e348282y 3132219 «063638,
s «118539y 181396y 2578569 3646807

DATA FOR NACA 512 ALPHA=1"

DATA XP4/=099444=e289 3 =e98339~e95979=29444,

: 3 -.9053,-.88!‘9.-.7600.—.65~~U,—.4L‘?G.
s ~e230%y 007y 27 0Ty e43.09 o630y
3 +8C079 oB8611y «9778s 86119 «8337y
$ eB00T9 o8{L79g e2C0U9 oLl 09=el™ %y
s ce840 50 eme 0l ig=eB 0090857 0g=aT34 7,y
3 ~eFT229=e S8 53510/

DATA CP41-6.11?8,-5.#166,-6.303&,-5.05&0,-4.3358,

w2, 50 0g=CelET0s=2eT72225=10447G9=1e02LC
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GS=I)yCP(4C5-1)
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c

c*' (322222 2222 222X 2228t 12221l i s xs R Rl iRl iRl XA 22X X 3 )

SUERCUTINC CALCOM(XI yPHUL4PHUZsCCOM1,,CCOM24CCOM33CCOMS4KATILKAZ)

ok 2RI 222X 2RISR IS TZI LI T L LR LR 2RI L E LR AR 22 2% 2

CALCULATIGN OF THE CCMPRESSIBILITY FACTOR

DIMENSION X1(205)sPHULC(205) ¢PHU2(Z{5)4PHU3(205) ¢ PHU
DIMENSION CCGCMZ (2T )gCCOHZ(Z‘5)|CCOH3(2”5);CCOH z?
DOUBLL PRICISICN A(SCe51)eBETZR

N1l=20Cg
PI=5.141592654

PHUl =X-COMPONENT CF TH‘ DISTURBANCE VELOCITY
CCOMZI=PREISSURE COEFFICIE

glule]

4¢(23%)
5

S
1§

CALCULATES CP(:3%
CALL CALCPC(Xl,PHUl.CCOHl)

CALCULATES CP(cND)
00 1 I=i,2

oM OAnOO0N

——e
L)
[

3
HZI POLYNOMIAL THAT FITS BITMEZIN -1 AND +1
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b
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-

-~ in

CALL MATCOM(AgX1sPHUL)

CALL GAUSS(A$3Ts0ETER)
RINT=ALOGC(L e +X1(I13/0ie=X2CI)))/PI
PHU2(I)=PHUZ (1) +SNGL (AU1923)) «R INT
DO 2 IM=2,2f
RINTZRINTZX1(1)=(1=FLOATC(=1)#2(IN-10))

s /(FLOAT (IK=-2)+PI) RIGIN, INAL
PHUZ (I12=PHU2 (1) +SNGL CACIMp 1)) *RINT OF P4y,
CONTINUE POOR QU
CALL CALCPC (X1 ,PHUZ s CCOMZ) AL
CALCULATES CP(ZRD)

50 3 I=1g220
PHUS(TI=PHUL (D)
CALCULATES THE POLYNOMIAL THAT FITS BETWEEN -1 AND +1

CALL HMATCOMCA,X14PHUZ)
CALL GAUSS(A93C8ET
RINT= ALOG((1.+XI(I))I(Z.-X‘(I)))IPI
PHUS(L)= PHU3 (1) +SNGL(A(Z921 D *RINT
RINTSRINTSX1C(I)=Cle=~FLOAT((~1)+ (IM=1)))

5 /(FLOAT(IM=1}<PI)

HU3(I)=PRHUICI)+SNGL (ACIMs 21) ) *RINT
FONTIROE
CALL CALCPC(X14PHUZ¢CCCM3)
6C T0 7

CALCULATES CPCaTH)
DO S I=14200
PHUA(CI)=PHUI (1)}

CALCULATES TH- POLYNCMIAL THAT FITS BZ TWESN -1 AND +1

CALL MATCOMCAsX14PHUZ)

CALL GAUSS(AyzUsDETER)D

RINT=ALOG((Z e+X1(1))/(1a-X31€I)))/PI

PHU4 (I)=PHUA (1) +SNGL(A(21422))=RINT

BC & IM=Z427

RINT RINT*X1€I)=(ls~FLOAT((=1)*2»(IMK-1)))
?%é&EPHUQ(I)*SNGL(A(IH’ZIJ) RINT

CALL CALCPC(X14sPHU44CCTM4)

CONTINUE

RETURN

END

(ot I XX 2122 22222t 2R as Al it dltl s St ITIETTPIT RIS AR 22 RS 2 2 2

SUEROUTINE CALCPC(XZj PHUL.CCOMI) 4

[(WTETETIITIIEL 242 R 22 st Al &t &8 &l 23T XTSI IE S22 2222 R RS RS S

C
c

Cc
c
c

CALCULATES CP FROM PHI
DIMENSION X1(Z225)9PHULI(2IS),CCOMICZLS)
DOUBLE PRZCISION ZsX

PHU1=X-COMPONENT OF THZ DISTURBANC: VZLOCITY

)
2

[l SR

IS RT

HOX IR
3= il

oEEE



GO TO 2
ENDIF
RGA&Z;(&%.:FE }(%))?*2)*(l-*SNGL(Z)*SNGL(Z))
=1e! (iet=le {
60 ;SA%-E-}..*( le2=led* oIzt eb*{le~lic) glflc‘u\YAE PACE rey
OE >4 I8
AL (1)2(12-02)/ (SCRT( Lamgbreblvatrabntoa5=02/202/  OOR QUALITY
(1,+SQRT(le=eB*eb)))
2) CCOML(IN=(2e/(iad%ab*u))*((KFAC**RGAM)~1.)
z CONTINUE
i CONTINUE
RZTURN

CRE 2t R B e 2P AAXNAENAARI AT A EEE o AR Ak b AR EREAEEEREARRA RN AR NN NN

SUEROUTINE MATCOM(A.XI,PHUL)

R T Ty e e T R S e A s AL Al d
c
g MATRIX CALCULATION

DIMENSION PHULCZ2CS),
DOUBLE PRZCISION A(C:

POLYNOMIAL CALCULATION
RHK:-l-*Z.{Zl.

(mly]

oPHK ¢ X2 ogPHU14272)
E§K91)

6
s
$
5 RHK=RHK +2
RETURN
END
T L T L e n e s T L S detatdtedoirdaiotetuddodadodolinfiniodadodd
SUBROUTINE COMPLOT(X1,CCOM1,CCOM29CCOMS9CCOM4sXZ9CP Ny
3 KAIsALPHA9IPOSeIPOLY9eNeR)

[ TR 222222222222 222 X2 TR 2 2 222 S a2 2 2 2 2 223 2 FYTILTYPYESLI R R R 2 2 2 & R 2 2 & & 2 &

PLOTTING ROUTINE .

DIMENSION X3 265).CC0H2(225)QCCGH3{ZES)sCCOM#(ZCS)
DIMENSION X3 )
OOUBLE PRECI
Y
(

Kesx{(J=1)
D+« 2)+CEL
D+ ") +DEL
Celd)eixZ
-t

3/ (2s0¢0)) >
#

»/
000 $MX

c
c
c
c

CALL PLOTSK
CALL FACTOR
N1=2L13

v
"t
¢
s

L]

00 2 2C XK XK
et aieit tatateter
OCQO A e
XEXRIEEZZZZ
[(SIEIET ST TS TST LT 2
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OF POOR QUALITY

tee e
[ SR R TR o)
W Nt N

CCOMA (N2+1)=CP(N2
c CCOMA(N1+2)=CP(N2*L)

c AXIS AND ORIGIN
CALL AXIS(:Z -ggh.2|1HXg“195.,§
CALL AXIS(...é.z....gcﬂcpgeoﬁoL!
CALL AXIS(Zel298el9lH 2=195esc

+2))
CCOM1I(NL+2))
P’ 0(9tesP ey
¢

[ J

[ 3

. .-.FLOA?(N),:..J)

c CALL NUMBER (3.8
c P Eh oW G APER Gb G 4 G WY G o o T O O 4D G ab Eb O T S -----------------------_---- rYy x x 732 x r r r X ¥ I 1 J
CALL LIN"(X’ cocomz ng‘z'ﬁyh)
CALL SYMBOL o’5.¢-9.-.¢,J-,' )
CALL LINE(XI'CC0H39NIg"‘6|
CALL SYHBOL‘3.Q5..-1,3’UQQ-1)

g0 107
CALL LINE(X1,CCOMAsNIy 2=614)
CALL SYMBOL(3ey4e7% ..1.4....
7 CONTINUE

c
C
c COMPARISON
c
c

CALL LINECXZ gCPogNZ9lele2)

TITLZ

GQ TG =22

CALL SYMEOL(ClassSeely®KARMAN-TSIEN CORREZCTION FORMULA®,
Qecs) CALL SYMBOL

sg'NACA ca1e M=(eb ALPH
T(=eS9=e39399)

END
Ci*i*i*ti*’i********tt*t****it*i**iit**tttttt**tt*ttr***t**ttt******t

SUBRQUTINE CORR(XsUXSeX2sUXNgNI)

c** ’*ﬁt**f**ti *.*'t'itf’fi*'*it*******i***tit**Qt****tit****iit L2 2 4 & & 4

CALCULATES UXS BY INTERPOLATION USING UX(2L3)

DIMENSION X1(22S)eUX(Z73)

IF(X.LE.Xl(’)) THEN

Uxs (X‘Xl(c))*(X-XI(S))*(X-XIQQ))*UX(I)/(Xl(l)-Xl(A))
F(X2(1)=-X1(4))~

(3) )% (X=X1CA)I*UXE2I/CXIC2I=X1(2I DI/ (X1C2I=X1(3))
€2))* (X=X1C4)22UX(3I/(XIC(II-X1(LI DI/ (XL (3)=X2(2))

€2))» (X=X1¢I)I+UX(43I/(X1€A)=-XI1(1)D/(X1(4)=X1(2))

s BN elwly
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D0 1 I=34N1=3

IF(XeGTaX1(I) oANDe X.gE.Xl(I*l)) THLN
UXSS(X=X1(I))*(X=XICI+ ) e (X=XICI+2))*UXCI=1D/C(X1(I=1)=-X1CI))*
$EX1(I=1)=XiC(I+3))*(XZ(I=1)=-X1(1+2)))+

SUX=X21CI=1))* (X=-X1CI+21)DR(X=X1(I1+22D22UXCI)/CCAICI)~XIiCI=1))~
S(Xl(I)-X}(I’l))*(Xl(I)-Xl(I*Z)))*
S(X-XICI-A))*(X-XICI))*‘X-XI(I*Z))*UX(Ifl)I((Xl(I*l)*Xl(I-l))t
SIX1(Tei)=X2CI))aXIC(I*2)=X (I+2)))~+

SX=X1(T=21)) e (X=X1CI)Ie(X=XI(I+1)I*UXCI+2)/((XIUI+2)=X1(I=1))~
SIXL(I+2)=X1CI)In(XNICI*2)=X1(I*2)2)

ENDIF :

CONTINUE

%Fé{.gT.Xl(Ni-Z)) THEIN

UXS=(X~ Xl(I))*(X-XI(’0L))*(X-Xl(l*’))*UX(I-l)I((Xl(I-l)-Xl(I))*
SAXICI=1)=X2C(I+21))2(X1(I=1)=X1(I+2)))+
$(X~-X1(I~ l))t(X-Xl(I*-))*(X'Xl(I*Z))*UX(I)I((Xl(I) X1C(I=1))~
$IXI(I)- X;(I*l))i(Xl(I}-XI(I+2)))+

S(X=XICI=1)22 (X=X2CI)I*(X=X3ICI+2))»UX(I¢1)/C(X1(I+1)=X1(I=1))»
S(X1(T+1)=X1CI)I*#(X2CI+21)=X1(I+2)))~
SIX=X1CI=1)2x (X=-X1C]D )= X=X 1(1*’))*UX(I*Z)/((X;(IoZ)-Xl(I-l))t
SIXICI+Z)=XI1CIII*(XICI+2)=Xi(I+1)))

END IF

RETURN

IND
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*"**'it'f***t*'ti****it*****ftﬁ**i***i***ﬁ*,***i***i*****f**i***f**

c

c

E SOLUTION OF THE INVERSZ DESIGN PROBLEM

R T e e s e e 2 T L Ly e AL RS R et L il a sl
c

PROGRAM REV& (ANSWZRyOUTPUT3COSFPOsCPDATA9CPTABG 9 JOUKD9PLOTY

STAPEz=ANSWZIR yTAPE 3=COCFPCy TAPEE=CPOATA, TAPEG=CPTAB4 s TAPET=JOUK?)
DIMENSICN XACS')AX:(Z‘E)!CP(Z ) UX(223)5Y1(235) 9¥2(255)
DIMENSION XD1(z38)5vXeZ72y,ul275 _3
DOUBLE PRECISION XsA (ST 3513 4DET

**i*t*'**t*t’it’****t**i***"*****t***t****t***tt******tf**it***i***

INPUT GUANTITIZS

PDLINOH OF DEGREE N
N=2
PRESSURE DISTRIBUTION
14THEORZTICAL ZLLIPTIC DISTR IBUTION,ALPH )
IsPOLYNGMIAL NACACTZ2 (ALCPy PO N=12)9ALPHA=DJ)
. 8.fLLIPTIC PCLYNOMIAL (ALCPy COEFPO N=371)9sALPHA=C)
5,NACAZZ CISTRIEUTICN FRCM TABe (CPDATA)oALPHA=2)
6’NACA1: PISTRIEUTICN FROM TABe (CPTAEA) 9sALPHA=4)
7sCALCULATED JOUK-CuSKY DISTRIBUTION (JOUKZ)oALPHA=C)
KAISéCYLINuER'ALPHA=')
DISTURBANCE FITLD:S isUX
..’Vx
KAP=2

**ii****ii"*i*****tt*tt**t'*'****’t********ii*t’***tt**i'*'***titt*

COMPUTES OR READS THE X-DISTURBANCCZ VZILOCITY FIELD

THEORETICAL ELLIPTIC DISTRIBUTION
THICKNZSS RATIQ

OOOOOOONN OO OOOOOO0OO00 OOOO0O00

RI=ell
IF(KAT.EGe:) THEN

N2=cCC

X1(2)==le+2e JFLOATCZCY) :

DO 21 I=14N1 4 :
UX(I)=(1.*RT)/(1-*RT'RT*X1(I)*x1(I)/(lo'Xl(I)*Xl(I)))'l.
VX(I)==(UXCI)*+2a)*RT*XICII/SERTC(1e=X1(I)*X1(I))

21 X1ICI+2)=X1C(Id+2./FLOAT(Z2"1)
c INDIF
c CYLINDER
IF(KAI.EQ«S) THEN

N1=Z00

Xi1(i)==2e+2./FLCGAT(CZC1)

CO 32 I=1eNi
UX(I)=2e*(le=X2(I)*X:(I))~1e
UYX(I)==2.2X2CI)*SQRT(1le=X1¢(I)*X1C(I))

a: “NDIF XICI+21)=X1CI)*2./FLOATC2(1)

alg)

DATA OF CP FRCM PROGRAMZ ALCP

ORIGINAL PAGE IS
OF. POOR QUALITY



§.3 eORe KAILEGe4) THEN

a."’"g
iZ’S) AL (I3 4CPCI)

FDXCZoKAIsXSeRT)
QRT((JQ-CP(I))/(I*Z*Z))-lo

O KK I NI O
[R7 Y]]

ZHH O i
e~
meg | f

>

”~

[

-

+

|.4

u

*

N

h
[\

~ NN
CHNwe W
o e "

~ ey
e W

IRIE A NIES

INDIF

C - JOUKOMSKY AIRFGIL
IFC(KAI+EQe7) THEN

A ) x1¢1),cp(1>
5) X1(I)sCPCI)
Z9KAIyXSeRT)

Qo
or:
tres 11D
I HOmyp-2e3
Comt) Mo ¢ N
l'\CDUvNN
WA e

IY+le)*2

Qe COXMNCN
OXXPNIM~Imr
it N
ot b [ XK O e

i

7
INDIF

COMPUTZS THEZ MATRIX
X—-(l-D*O)*(¢.DO“)/BBL‘(FLOAT(N*I))

0 2% N
§2=3NEL

AL E5RR IXS s UK Sy X1 s VX

CALL CORR (XS sUXS X2 sUX

 CALL MATR1(AgIsXgUXSgV

X=X+ (2eL+0)/OBLE CFLOAT

26 CONTINUE

wlnlalelglinlp)

SOLVES FOR THE MATRIX A(NsNPLUSM)
CALL GAUSS(A¢NSDETER)

(glnislplglnle)

WMRITE(C9222) DETERgNgN+2

WRITE(Ze2:E)

B0 S I=1leN :
XACI)=SNGLCA(IgN*2))

(
TCCLle=CFCI))/(1latixZ))~10
(

ORIGINAL PAGE IS
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[ Y R XS 222222222222 X222 2223222 2222 21a2 22222 t2tis szl sl s




MRITE(2,231) XA(I)
5 CONTINUE

AR AR AR R P R R R E R P I R AR AR T AN R AT R R A AN R R AR E R AN A A AN RS RNA AR AN ANTS

v

COMPUTZS THE AIRFOIL PROFILE USING THE POLYNOMIAL COZFFICIZINTS
=3

(alziglnligligiyl

0
ot
[alad

41% '
.EG._ OR o _I. Gel +O0Re KAILLBeT o0Re KAl LEQeb
KAI.-Q07) THEN

b ] Qo

[
OQrQe M
2 TIOV D IC M IS bt Kt I () =€ "TII4 1 DCHE N b4 D) 2O K

OX<Z

ICI-1)-2/FLOAT(271)

<
2) CALL CCRROXSp¥UXSeXIeVXeNl)
1) CALL CORRU(XSeUXSsXZIsUXeN1)
LUAS e XAgUXS g UXS eNeKAP)
+UXS)
=31 )+FXx(XC1(I)=XD1C(I~1))

ZniTemmis W
o e G K R I pet (11
Hawd >0 | e
VOV VLI Ie
»pﬂnoﬁhvmr1

CXNTs ¢ m|lw
(TR N wlgs Tl o) &0

C AIRFOIL
EGel oORe KAI.ZG «CRe KAI.EQGe8) THEIN

.IFLQAT(Z?I)
Yi(1)=l.
XD1(I)-2./FLOAT(201)

} CALL CORR(XS’UXSQX'QUXQNI)
) CALL CGRR(XSsV¥XSsXZIsV¥XeN1)
XSeXAsUXSe¥XSeNsKAP)
Uuxs)
I)+FX*(XC1CI+1)=-XD1C(1I))

(2 Y]
20 TOHXPTUMNNQOHwe e

[ e

s [l O

i M
c'm—ncg'nr' Ii'!
B3 T

O e X

OO VO ¢ HOR K
1 ET MYk D (8
L DD Dw | 0w

ATl ] e -
wNTUs & ~jiw e

CrEfT XXX 10 ¢ ||
MexX P2POHIME )

X M TNNO

b
8
4
-

INDIF

R A E R T OO AN AL O DR A A SR OI KA R RO AR AN T AR AR IR I AEXA N RGO R RO XA OL OSRGOS
4
COMPUTATION OF THE THECRITICAL PROFILZ FOR COMPARISON

CALL THEOCNDsKAI9XC19¥CeRT)

FORMAT(/*SMALL PIVOT - MATRIX WAY B= SINGULAR®)
FOQHAT(/Q'J- R = Yollkellde?® = 9,12/ *NPLUSM= ¢,12/)
FORHAT(IH 5)

-ﬁo YNOMIAL COEFFICIENTS®/)

O OAOO0O0N O

[AS TSR STV 8 ]
Y I D
MUNEILN

n

Q

X

x

»

DN

P e Y LI 2 22222 FXR SRR R 2 2 2 22 2 R £ 2 £ 8 422 2 2L b Add il A gy L2222 2 R 2 42 24

(alplalglale)

PLOT OF THE PROFILZ OF THE WING -
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c . : ORR:UI‘ T e

AL LTS rLon O roon g,
CALL SCALE(Xﬁz;E.’NDsl) R QUAL “Y
XDi(ND+1)=-1,

XD1(ND+2)=.4

IF‘KAI FQel e0Re KEIlefBed «0ORe KAI.EGe8) XD1(ND+2) =42

CALL SCALE(YisSegNDyl)

YI(ND+2)=7,8

YI(ND*2)=¢ 2

JF(KAIEQe8) YI(ND*2)=,2

Y2(ND+1)=YI(ND+])

YZ(ND+Z)=Y1(ND+2Z)

CALL AXIS(2.2'20°’AHX;-lga.,J.|XDi(ND*l)'XDI(ND*Z))

CALL AXIS(2.2.2.2g¢HY 24.6-,9:..Y;(ND*’),Y¢(ND*4))

CALL AXIS(ZeZp8el29¢° ,C,..o,i,-9999.’l-)

CALL AXIS('T-Z,Z.&’ 'G’ .,9~ 09999091-)

CALL ORIGIN(ZeZ92ez9T)

CALL LINE(XDleYleNCels-691)

CALL LINE(XD1sY2eNDelsZs2)

CALL SYMBOL(e6¢CeS9elisleslas=1)

CALL SYMEOL(le5SeC 9els®POLYNOMIAL N=®3le913)

CA NUHB:R(2.E,5.5'-1,FLOAT(N)£3. )
ngtgA{.EQoE) CALL SYHBOL(02’6.2~’o34"DATA FROM THZ PROGRAM ALCP?®,

o926
$§F(§2§.EQ.4) CALL SYMECOL(eZ96e<Seei49"DATA FROM THZ PROGRAM ALCPTY,

s9c
ngtgﬁ;.EQ.S) CALL SYMECL(eZ96e<S9elayg"DATA FROM TAB (3 DEGREIZ)®,
b X

IF(KAT«EGQGel) CALL SYMBOL(el96e259e149*cLLIPTIC AIRFOIL'vO.;l&)
IF(KATILEGQaS3) CALL SYMBOL(eC 95e259e149*CYLINDER® 9 e 98)
IF(KAI.EQe7) CALL SYMEQL (eZ35e25 90149 *JOUKOMSKY AIRFOIL®9%.917)
CALL PLOT(=eS9=e59999)

7 CONT INUE
STCP
END

R AR R R R A N R RN P A R A AR N N T R R RN LRI R RN PR A A ARSI ARE R AN AN PR ET T AT A ARRA D

CALCULATEIS THE AIRFOIL DERIVATIVE

SUERQUTINE DFUX(Z’KAIQX,RT)
ELLIPTIC AIRFOIL
IF(KAI.EQel .OR. KAlo.cka4) Z‘-RT*X/(SQRT(l.-X*}))

QeB) Z==X/SQRT(1le=X*X)
Gel oeCRe KAletGeD «ORe KAI.EGes)
*RTw (o FAZiS/(SQRT((X*2 o)/ 20)) ="
€( X*IQ)ICO I+ 3 645 (((X+1a)/2e)>
((X+14)/2e)%x=2,))
Y
G

OO0 O OO0O0000N
(9]
-
r
[

[l 4]
M»TN
o~ )

C=HAREXHP) UNX P> X

I3

AIRFCIL
e7) Z==44*RT*(SGRT(le~X2X)+(1ie=X)*X/SGRT(1le=X*X))/3e/

Do DPONNN P P
ZOIr-E R OD
o e ) HMiie =e "
wMX o~ e CINMD

C
C
c

I 2 ETEIZIEE X222 LI 22 2 22 222 &R 2 X2 R d 2 X422 2 R F 2 2 23 2"2°F F L3 T 2 R 2 F T 2 FF X TR FRL PR




(glgly

(aly) (glalnlaigligle]

(aln

1z

CALCULATES UXS BY INTERPGOLATION USING UX(27S

SUBROUTINE CORR (XsUXSyX1pUXsN1)
DIMENSION XI(z.5ysuxcice}

IF(XeLZeX1(2Z)) THZIN

UXS=(X=X1C2) ) (X=XI1CZII=IX-X2CGII*UXNCLIZ(XICI)=X1(2))
SI(x1(1)-x1(3))/(x:(1)-x*(4))
SUX XTI RN =XICIII®A=X2Ca))=UX(2)I/C(X1(2)=-X1C2INI/X1(2)=X1(3))
$/(X1(2)=-X1Ca))+
SAX=X1(1))*(X=X2C2))=(X=X1Ca)I*UX(3II/(XLCII=X1C1D I/ (X1 (3I=X2(2))
$/(X1(3)=X3i(a))>
SIX=X1CIII =X =X21C2XP>X-XI1C3II*UXCA)/CXLCA)=-X1C2D)DI/CNL(A4)=X2(2Z))
$/7(X1€(4)=-%X2¢3))

ENDIF

0 1 I=3¢NI-3

IF(XeGTaX1€I) JANDe XelLEeX1(Iel))
UXS=(X-X1(I))*(X-XI(I+1))*(x-Xl(I+;))*UX(I-1)I((Xl(I-l) =X1¢(I))~
SIXL(I=1)=X1CI«2))»(X2(1=1)=X (1*2}))»
S(X-XI(I-l))t(X-XI(I+;))*(x—x1(102))*UX(I)I(IX1(I)-Xl(l-l))t
SIXIL(I)=X1C1I+1)3x(X2(I)=-NI(1+22))+
$(X~-X1(I=1))x (X~ 1(1))tgx-XZ(l*Z))*UX(I*I)I((x1(1+1)-X1(I-1))*
SIXNI(I+1)I=X2CI)Ie(X2CI+2)=X1(I+C)))
$(X-XI(I-1))*(X-X1(I))t(X-Xl(Ifll)*UX(I¢2)I((XI(I+2)—XI(I-1))t
SUX2C(I+2)=X1CI)In(X2C(I+2)=N2(1+2)))

INDIF

CONTINUE

%F&{.gT.Xl(Nl-b)) THEN

UXS=(X=X1C(I))e(X=-NICI+: ))*(X-11(I*Z))*UX(I-I)I((Xl(I-l)-Xl(I))*
SEXIC(I=1)=X1(I®+2)I*(X2(T=1)=-X2€¢1+2))
SIX=X1(I=1) ) (X=X21(I+1)D)*(X-X2 (I*z))-UX(I)/((x1(I) X1C¢I=1))~»
$(X2CI)=X1CI*1))=(X2C(I)=X2CI+3)))+
$EX=X1CI=1)) e (X=X1(I)Ix(X=-X_ (I+;))*UX(I*I)I((X1(1+1)-X’(I-l))t
SIXLCI ¢ )=X_(I))=(X2CT+2)=XiCI+2)))
SIX=XIC(I=1))x (X=X1(T)IeCX=X1(I+.) )~ UX(I¢2)I((x‘(I¢¢)—x1(I 1))
SIX2(T+2)=X1CI)I»X2CI+Z)=X2(I+21)))

INDIF

RETURN

END
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CALCULATZIS THZ THECRITICAL PROFILZ OF THE AIRFﬁIL

SUBROUTINI THEC (N1yKAI¢sX13Y24RT)
DIMENSION XX1(2{5)¢Y2(215)

SLLIPTIC AIRFQIL
IF(KAI:EQ. .OR. KAI+ZGe4) THEIN

CC 1 I=1
YZ(I)=RT= SQRT(i.-Xl(I)*Xl(I)l
INDIF
CYLINDZR
IF(KAI.EQe2) THEN
DO 10 i=1s¢NJ
Y2CIX=SORT(1e=Xi(I)*X1(1))
INDIF
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NACA 012
IF(séléE%zi +ORe KAISEGeS oORe KAI.EQeE) THEN
- l

Y2(I)S10e*PT#(e2069+SERTIXL(ID* 5+45)=0226%(X1(I)*e5+e5)
ce3CL1E* (XL (I)*e5+aC ) o22) 4o 0B84 3% ((X2(I)neS5+.5)n23)
el 1S %((X1(1)reS+eS)**q))
CONTINOZ

INDIF

foukusKy AIRFOIL s et 15

° e HE (TAT T

DG a-1%1 31 DE POOR Q”,_L:IY
Y2(I)=8 e #RTa(2e=XZ(I))*C(SART(L1e=X1(ID*X1(I))) /3 ./SART(3,)
CONTINUZ

ENDIF

RETURN
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GAUSS~JORDAN REDUCTICH

THIS SUBPRJGRAH FINDS THE _SCLUTION VECTOR CORRZISPONDING TO A
OF N SIMULTANEQUS LIMEAR ~GUATIONS USING THE GAUSS~-JORCAN

REDUCT’GN ALGORITHM HITH THE DIAGONAL PIVOT STRATZIGYe

SUBROUTINZ GAUSSCAgNoDITER) _

OOUELE PRICISICON A(S ¢S l1)sCETZFR oEPS

...Ps IOD l-‘

NPLUSM=N-+1

essse BEGIN ELIMINATION PRUCEGURE seaecee
BcTER=(i«0+0)
Do K=1eN
se oo UPCéTL THE DETERMINANT VYALUEZ ceeese
DETER=DETCR# A(K oK)
K FCGR PIVOT ZLEMENT TOO SMALL esecee

IF(DABS(A(K9K)) «GT+EPS) GO TO &
Go TO 7 o
oooc..( EDR"ALIZL THE PIYOT ROM escees
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“KP‘.NPL USH

e \0Mm

BC €&
6 A(KeJ)=A(KeJ)/A(KsK)
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A(K oK)
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1

Z KC(TH) COLUMN ZLEMINTS ZXECPT FOR PIVOT eecee

eORe A(I9KI.EGe(CeD+2) » 60 TO 21
sNPLUSH
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COMPUTZS THE MATRIX ELZIMENTS



[g1nlg]

=3

o

o

)

SUBROUTINE MATRI(AIoXsU
J0UBLE PRICISION XgA(ST
PI=3¢1415926540+0

IF(KAP.EGe1l) THEN

ATC(J=1))+P1)
LECUXS)

C'ﬂ o

£
X
L
B

62nvc.v

Igl
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BLE
NTI
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» -4
~ n
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PRESSURE DISTRIBUTION

SUBROUTINE CPDR1I(XSeXAgUXSoUXSyNeKAP)
DIMENSION XA(S5:)

IF(KAP.EGe1) THEN

YXS=XA(L )

D01 I=3,
VXS-YXS*XA( e (XS»*(I=-1))
CONTINUZ

ENDIF

+2
S3/(1e=XS)I/PI

VXSeNsKAP)Y
oP1

DkOG(((I-B+C)*X)I((l.D+C)—X)))IPI
*
SA(I’J‘Z)-((l-D*CS)—DBLE(FLOAT((-1)**(J-l))))/

ORIGINAL PAGE IS
OF POOR QUALITY

ggLOAT((-l)**(J-l)))I(FLOAT(J-I))IPI



